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Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not 

well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality 

models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary 

information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward 

because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors. 10 

In this study, we present a practical approach to producing high spatio-temporal resolution maps of urban air pollution capable 

of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality 

model, driven by an open source atmospheric dispersion model and emission proxies from open data sources, and (2) a practical 

spatial interpolation scheme, capable of assimilating observations with different accuracies. 

The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, 15 

during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy of 39% 

within 2 km of an observation location, and 53% at larger distances. When low-cost measurements of the Urban AirQ campaign 

are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network. 

During the summer holiday period, NO2 concentrations drop about 10% due to reduced urban activity. The reduction is less in 

the historic city center, while strongest reductions are found around the access ways to the tunnel connecting the northern and 20 

the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow 

is redirected to other main roads. 

Overall, we show that Retina can be applied for an enhanced understanding of reference measurements, and as a framework 

to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas. 

1 Introduction 25 

Due to growing urbanization in the last decades, more than half of the world’s population lives in cities nowadays. Dense 

traffic and other human activity, in combination with unfavourable meteorological conditions, often cause unhealthy air 

pollution concentrations. Over 80% of the urban dwellers are forced to breathe air which does not meet the standards of the 

World Health Organization (WHO, 2016). In 2015, an estimated 4.5 million people died prematurely from diseases attributed 
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to ambient air pollution (Lelieveld et al., 2018). Good monitoring is important to better understand the local dynamics of air 30 

pollution, to identify hot spots, and to improve the ability to anticipate events. This is especially relevant for nitrogen dioxide 

(NO2) concentrations, which can vary considerably from street to street. NO2 is, apart from being a toxic gas on its own, an 

important precursor of particulate matter, ozone, and other regional air pollutants. Observations from a single location are not 

necessarily representative for a larger area. Unfortunately, urban air quality reference networks are usually sparse or even 

absent due to their high installation and maintenance costs. New low-cost sensor technology, available for several years now, 35 

has the potential to extend an official monitoring network significantly, even though the current generation of sensors have 

significant lower accuracy (WMO, 2018).  

However, adding value to the measurements (either official or unofficial), apart from publishing the data as dots on a map, is 

not straightforward. Our aim is to make better use of the existing measurement networks to get the best description of hourly 

urban air quality, and to create value from low-cost measurements towards a Level 4 product, according to the classification 40 

proposed by Schneider et al. (2019)  

To obtain high-resolution information, a very sparse observation network needs to be accompanied by a valid high-resolution 

air quality model, whereas a very dense network can do with simple spatial interpolations. The situation in most large cities is 

somewhere in between. There is often a reasonably large reference network present (10+ stations), sometimes complemented 

with an experimental network of low-cost AQ sensors. Assumptions about underlying unresolved structures in the 45 

concentration field are still needed, but this can be done with a simplified air quality model, using the available measurements 

to correct simulation biases where needed. 

A popular approach in detailed mapping of air quality is land use regression modelling (LURM), see e.g. Beelen et al. (2013). 

LURM uses multiple linear regression to couple a broad variety of predictor variables (geospatial information such as traffic, 

population, altitude, land use classes) to the observed concentrations. It is typically used in exposure studies, which target long 50 

integration intervals by definition. Problems of over-fitting might arise when too many predictor variables are used. 

Alternatively, Denby (2015) advocates the use of less proxy data, and a model based on more physical principles. In his 

approach, the emission proxies are first (quasi) dispersed with a parameterized inverse distance function, before being coupled 

to observed concentrations in a regression analysis. 

Mapping of air pollution for short time scales is challenging. Only a few scientific studies are published aiming at assimilation 55 

of near-real time observations in hourly urban concentration maps. Schneider et al. (2017) use Universal Kriging to combine 

hourly NO2 observations of 24 low-cost sensors in Oslo, Norway, with a time-invariant basemap. The basemap is created from 

a yearly average concentration field calculated with an Eulerian/Lagrangian dispersion model on a 1 km grid, downscaled to 

100 m resolution. Averaged over reference locations, their study shows that hourly values compare well with official values, 

showing the potential of low-cost sensor data for complementary air quality information at these time scales. 60 

In this paper, we present a more advanced yet practical approach to map hourly air pollutant concentrations, named Retina. Its 

main system design considerations are: 

● Observation driven  
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● Able to assimilate observations of different accuracy 
● Potential near-real time application 65 
● Versatile / portable to other domains 
● Based on open data 
● Reasonable computer power 

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological 

conditions (described in Section 2) which is dynamically calibrated with recent measurements (Section 3). In the second stage 70 

it assimilates current measurements using statistical interpolation (Section 4). Section 5 presents the validation of the system, 

while Section 6 shows the added value when assimilating additional low-cost sensor measurements. Section 7 and 8 are 

reserved for discussion, conclusion and outlook. 

The method is applied to Amsterdam, a city like many where NO2 emissions are dominated by transport and residential 

emissions and where local exceedances of limit values are regularly observed. The methodology is flexible enough to be 75 

applied to other cities, mainly because it is relatively easy to implement the urban model for a new domain.  

2 Setting up a versatile urban air quality model 

Amsterdam is the most populous city in the Netherlands, with an estimated population of 863,000. Located at 52°22′N 4°54′E, 

it has a maritime climate with cool summers and moderate winters. Concentrations of NO2 within the city vary considerably, 

being partly produced locally and partly transported from outside the city. Measurements of 2016 show that, compared with 80 

regional background values from the CAMS ensemble (see Section 2.2.3), urban background concentrations are on average 

around 50% higher, while at road sides NO2 concentrations are about 100% higher.  

One of the largest unknowns when modelling urban air quality is a detailed, up-to-date emission inventory capable of 

describing the local contribution. For cities such as Amsterdam the local emissions are dominated by the transport and 

residential sector. This is confirmed by the EDGAR HTAP v2 emission inventory (Janssens-Maenhout et al., 2013), which 85 

estimates the contribution of NOX emissions in a 20 × 33 km2 (0.3 degree) area around the center being 62%, 20%, 12%, and 

6% for the sectors transport, residential, energy, industry respectively. Especially the contribution of road transport is relevant, 

as its emissions are close to the ground in densely populated areas. We will use traffic information and population density as 

proxies for urban emission (see Section 2.2.1 and 2.2.2). 

In contrast to the regional atmosphere, the urban atmosphere is more dominated by dispersion processes, while many chemical 90 

reactions are less important due to a relatively short residence time (Harrison, 2018). For the dispersion of the emission sources, 

we use the open source steady-state plume model AERMOD (Cimorelli et al., 2004), developed by the American 

Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). Based on the emission inventory 

and meteorology (see Section 2.2.4), AERMOD calculates hourly concentrations of air pollutants. The concentration 

distribution of an emission source is assumed to be Gaussian both horizontally as vertically when boundary layer conditions 95 

are stable. In a convective boundary layer, the vertical distribution is described by a bi-Gaussian probability density function. 
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2.1 AERMOD simulation settings 

We use AERMOD version 16216r with simulation settings summarized in Table 1, operating on a rectangular domain of 18 × 

22 km2 covering the municipality of Amsterdam for the most part. All coordinates are reprojected to a local equidistant 

coordinate system with the city center as projection center. Instead of using a regular grid, we use a road-following grid 100 

(Lefebre et al., 2011). This reduces the number of receptor points, while maintaining accurate description of strong gradients 

found close to roads. Grid points are defined at 25 and 50 m distances perpendicular to roads, and at parallel distances of 75 

and 125 m respectively. The open spaces between these grid points are filled with a regular grid at 125 m resolution. Roads 

are modelled as line sources, while residential emissions are described as area sources. The dispersion is calculated for NOX 

to avoid a detailed analysis of the rapid cycling between its constituents NO and NO2. Afterwards, an NO2/NOX ratio is applied, 105 

depending on the available ozone (O3), see Section 2.1.1. 

Memory usage of AERMOD for the Amsterdam domain is proportional to the total number of emission source elements (here 

17,069 road fragments and 12,182 residential squares) and the number of receptor points in the road-following grid (here 

42,128). The calculation time for a single concentration field is around 10 minutes, but can be reduced to a fraction of this by 

parallelizing the code. 110 

2.1.1 Ozone chemistry and lifetime 

Primary emissions of NO2 (e.g. directly from the tailpipe) are only 5-10% of the total emitted NOX (Sokhi et al., 2007). At 

short time scales, secondary NO2 is formed by oxidation of NO with O3, while this reaction is counterbalanced by photolysis 

converting NO2 to NO. The reaction rate of the first reaction is temperature dependent, while the latter depends on the available 

sunlight. The NO2/NOX ratio has therefore an intricate dependence on temperature, radiation, and the proximity to the source 115 

(i.e. the travel time of the air mass since emission).  

A practical approach to estimate this ratio is the Ozone Limited Method (OLM), as described in EPA (2015). The method uses 

ambient O3 to determine how much NO is converted to NO2. The dispersed (locally produced) NOX concentration is divided 

into two components: the primary emitted NO2 (here assumed to be 10%), and the remaining NOX which is assumed to be all 

NO available for reaction with ambient O3: NO+O3 → NO2+O2. If the mixing ratio of ozone (O3) is larger than the 90% of 120 

(NOX), than all NO is converted to NO2. Otherwise, the amount of NO converted is equal to the available O3, i.e. (NO2) = 

0.1(NOX) + (O3). The reaction is assumed to be instantaneous and irreversible. The resulting NO2 concentration is added to 

the NO2 background concentration. 

Removal processes of NOX are modeled with an exponential decay. The chemical lifetime is in the order of a few hours. Liu 

et al. (2016) find NOX lifetimes in a range from 1.8 to 7.5 h using satellite observations over cities in China and the USA. 125 

Given the size of our domain and average wind speeds, its exact value is not of great importance. Based on regression results, 

we choose a practical value of 2 hour. 
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2.2 Simulation input data 

The dispersion simulation is driven by input data regarding emissions, background concentrations, and meteorology, listed in 

Table 2. All data, except for the traffic counts of inner city traffic, are taken from open data portals. The emission proxies are 130 

mapped in Fig. 1. 

2.2.1 Traffic emissions 

Road location data and road type definition data are taken from OpenStreetMap (OSM, 2017), which is a crowd-source project 

to create a free editable map of the world. We separate urban roads (labeled in OSM as “primary”, “secondary”, and “tertiary”) 

and highways (labeled as “motorway” and “trunk”), as they have a distinct traffic pulse, fleet composition, and driving 135 

conditions. Road segments labeled as “tunnel” are not taken into account. 

When the traffic flow q (in vehicles per hour) is known, the emission rate E for a road segment l can be written as 

 𝐸𝐸 = 𝛼𝛼veh𝑞𝑞𝑞𝑞            (1) 

with emission factor αveh representing the (unknown) NOX emission per unit length per vehicle. Hourly traffic flow data is 

taken from 29 representative highway locations from the National Data Warehouse for Traffic Information (NDW, 2019), 140 

which contains both real-time and historic traffic data. For the urban traffic flow we use data from 24 inductive loop counters 

provided by the traffic research department of Amsterdam municipality. Due to its large numbers, traffic flow is relatively 

well predictable, especially when lower volumes during holiday periods and occasional road closures are neglected. For each 

location we construct a traffic “climatology” parametrized by hour and weekday, based on hourly data of 2016, see Fig. 2.  

Traffic counts correlate strongly between different highway locations, all showing a strong commuting and weekend effect. 145 

Urban traffic typically shows, apart from lower volumes, less reduction between morning and evening rush hours, a less 

pronounced weekend effect, and higher traffic intensities on Friday and Saturday night.  

For locations x between the counting locations xi the traffic flow q(x) is spatially interpolated by inverse distance weighting 

(IDW): 

𝑞𝑞(𝐱𝐱) = �
∑ 𝑤𝑤𝑖𝑖(𝐱𝐱)𝑞𝑞𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖(𝐱𝐱)𝑖𝑖

,          if 𝑑𝑑(𝐱𝐱,𝐱𝐱𝑖𝑖) ≠ 0 for all 𝑖𝑖

𝑞𝑞𝑖𝑖 ,                 if 𝑑𝑑(𝐱𝐱, 𝐱𝐱𝑖𝑖) = 0 for some 𝑖𝑖
        (2) 150 

in which the weighting factors wi depend on the distance d between x and the counting location xi: 

𝑤𝑤𝑖𝑖 = 1
𝑑𝑑(𝐱𝐱,𝐱𝐱𝑖𝑖)2

            (3) 

2.2.2 Population data 

Population density is considered to be a good proxy for residential emissions, e.g. from cooking and heating. Here we take 

data from the gridded population database of 2014, compiled by the national Central Bureau for Statistics (CBS, 2019) at a 155 

100 m resolution. Each grid cell is offered to the dispersion model as a separate area source. To reflect the observation that 
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residential emissions per capita are less when people are living closer to each other (Makido et al., 2012), the emission fluxes 

are taken proportional to the square root of the population density p: 

𝐸𝐸 = 𝛼𝛼pop�𝑝𝑝            (4) 

2.2.3 Background concentrations 160 

As AERMOD only describes the local contribution to air pollution, we add background concentrations which are taken from 

the Copernicus Atmosphere Monitoring Service (CAMS) European air quality ensemble (Marécal et al., 2015). The CAMS 

ensemble consists of 7 regional models producing hourly air quality and atmospheric composition forecasts on a 0.1 × 0.1 

degree resolution. The analysis of the ensemble is based on the assimilation of 1-day old observations provided by the European 

Environment Agency (EEA). Each model has its own data assimilation system. 165 

In the CAMS product the local contributions are already present. To get a better estimate for regional background 

concentrations avoiding double counts, we take the lowest concentration found in a 0.3 × 0.3 degree area around the city for 

NO2, and the mean concentration found in this area for O3. 

2.2.4 Meteorological data 

The dispersion of air pollution is strongly governed by local meteorological parameters, especially the winds driving the 170 

horizontal advection and the characterization of the boundary layer which defines the vertical mixing. Meteorology also affects 

the chemical lifetime of pollutants. 

We use AERMET (EPA, 2019) as a meteorological pre-processor for organizing available data into a format suitable for use 

by the AERMOD model. AERMET requires both surface and upper air meteorological data, but is designed to run with a 

minimum of observed meteorological parameters. Vertical profiles of wind speed, wind direction, turbulence, temperature, 175 

and temperature gradient are estimated using all available meteorological observations, and extrapolated using similarity 

(scaling) relationships where needed (EPA, 2018). 

Hourly surface data from the nearby Schiphol airport weather station can be obtained from the Integrated Surface Database 

(ISD, see Smith et al. (2011)). We retrofit observations of temperature, winds, cloud cover, relative humidity, pressure, and 

precipitation to the SAMSON data format (WebMet, 2019a) which is supported by AERMET. Upper air observations are 180 

taken from daily radiosonde observations in De Bilt (at 35 km from Amsterdam), archived in the Integrated Global Radiosonde 

Archive (IGRA) (Durre et al., 2006). We convert pressure, geopotential height, temperature, relative humidity, dew point 

temperature, wind speed and direction to the TD6201 data format (WebMet, 2019b) for each reported level up to 300 hPa. 

2.3 Air quality measurements 

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam 185 

area. Within the domain used in this study their NO2 network consists of 15 reference stations: 5 stations classify as road 
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station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API 

200E and a Thermo Electron 42I NO∕NOX analyser, both based on chemiluminescence. A catalytic-reactive converter converts 

NO2 in the sample gas to NO, which, along with the NO present in the sample is reported as NOX. NO2 is calculated as the 

difference between NOX and NO. Laboratory calibration estimates the combined uncertainty of hourly NO2 measurement at 190 

3.7% (GGD, 2014). 

Low-cost NO2 measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality 

sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month 

measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by 

Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a 195 

membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by 

using low-noise interface electronics. The sensor devices were carefully calibrated in Mijling et al. (2017), solving issues 

related to sensor drift and temperature dependence. After calibration, they are found to have a typical accuracy of 30%.  

3 Calibrating the model 

Using proxy data instead of real emission introduces the problem to find the emission factors which best relate the activity 200 

data to their corresponding emissions. Instead of using theoretical values or values found in literature, we derive effective 

values which best fit the hourly averaged NO2 observations of a network of N stations.  

For a certain hour t, the emission of a source element i belonging to source sector k can be written as 

𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑘𝑘𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)           (5) 

in which Pki represent the corresponding emission proxy. The contribution of this source to the concentration at a receptor 205 

location j is 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡)𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡)           (6) 

with 𝑓𝑓𝑖𝑖𝑖𝑖 describing the dispersion of a unit emission from i to j. We apply a regression analysis for a certain period, assuming 

that for each t the total NO2 concentration cj at station j can be described as a background field b and a local contribution 

consisting of a linear combination of the dispersed fields of K emission sectors: 210 

𝑐𝑐𝑗𝑗(𝑡𝑡) = 𝑏𝑏(𝑡𝑡) + ∑ 𝑎𝑎𝑘𝑘 ∑ 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡)𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑆𝑆𝑘𝑘
𝑖𝑖

𝐾𝐾
𝑘𝑘=1          (7) 

Sk represents the number of source elements for an emission sector k. The second sum in this equation is calculated for every 

hour with the Gaussian dispersion model taking the meteorological conditions during t into account. Note that both background 

concentrations b(t) and local concentrations cj(t) are observed quantities, see Section 2.2.3 and 2.3. Considering a period of T 

hours, Eq. (7) can be interpreted as a matrix equation from which the emission factors ak can be solved using ordinary least 215 

squares. Given the physical meaning of ak, only positive regression results are allowed. 
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Note that our linearity assumption in Eq. (6) works best when relating NOX emissions to NOX concentrations. The non-linearity 

introduced by the variable NO2/NOX ratio (here determined within AERMOD by OLM) is assumed to be sufficiently weak 

for this assumption to remain valid. 

In our setup, the emissions are approximated by three sectors highway traffic, urban traffic, and population density (K=3). The 220 

resulting ak do not necessarily represent real emission factors. Their values partly compensate for unaccounted emission sectors 

and unrealistic modelling (e.g. based on wrong traffic data or an incorrect chemical lifetime). In Retina we update ak every 24 

hours, based on observations of the preceding week (T=168). Doing so, the periodic calibration adjusts itself to seasonal cycles 

and episodes not captured by the climatologies (e.g. cold spells or holiday periods). To avoid reducing the predictability of the 

regression model too much (ak dropping to zero), we do not use all reference stations for calibration, but only stations classified 225 

as roadside or urban background. For the Amsterdam network, N=11. The residential emissions are represented by the 

population density, which is a time invariant proxy. To allow for a diurnal cycle, the residential emission factor is evaluated 

for two-hour bins. This brings the total number of fitted emission factors to 14: one for highway traffic, one for urban traffic, 

and 12 describing the daily residential emission cycle. 

Figure 3 shows an example of the air quality simulation after the emission factors have been determined. The stacked colours 230 

in the time series show that the contribution from different emission sectors to local air pollution can strongly vary from site 

to site.  

4 Assimilation of observations 

As the air quality network is spatially undersampling the urban area, we need to combine the observations with additional 

model information to preserve the fine local structures in air pollutant concentrations. From the various geostatistical 235 

techniques available we choose Optimal Interpolation (OI) (Daley, 1991), having the desired property that the Bayesian 

approach allows for assimilation of heterogeneous measurements with different error bars. At an observation location the 

model value is corrected towards the observation, the innovation depending on the balance between the observation error and 

the simulation error. The error covariances determine how the simulation in the surroundings of this location is adjusted. 

Outside the representativity range (i.e. the correlation length) of the observations, the analysis relaxes to the model values.  240 

Consider a state vector x representing air pollutant concentrations on the (road-following) receptor grid (n≈40,000). Define xb 

as the background, i.e. the model simulation. Observation vector z contains m measurements, typically 10﹣100. Following 

the convention by Ide et al. (1997), the OI algorithm can now be written as: 

 𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑏𝑏 + 𝐊𝐊�𝐳𝐳 − 𝐻𝐻(𝐱𝐱𝑏𝑏)�           (8) 

𝐊𝐊 = 𝐏𝐏𝑏𝑏𝐇𝐇T(𝐇𝐇𝐏𝐏𝑏𝑏𝐇𝐇T + 𝐑𝐑)−𝟏𝟏          (9) 245 

𝐏𝐏𝑎𝑎 = (𝐈𝐈 − 𝐊𝐊𝐊𝐊)𝐏𝐏𝑏𝑏           (10) 

Matrix R is the m×m observation error covariance matrix. As all observations are independent (the measurement errors are 

uncorrelated), R is a diagonal matrix with the measurement variances on its diagonal. 
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Pb is the n×n model error covariance matrix, describing how model errors are spatially correlated. The calculation of Pb is not 

straightforward; in Section 4.1 an approximation is derived. 250 

Operator H is the forward model, which maps the model state to the observed variables and locations. We can simplify the 

matrix calculations by reserving the first m elements of the state vector for the observation locations, and the other 𝑛𝑛 −

𝑚𝑚 elements for the road-following grid. The Gaussian dispersion model is evaluated “in-situ” at the observation locations. 

Avoiding reprojection or interpolation means that there are no representation errors associated with H. The simulations at the 

observation locations zb can then be written as a matrix multiplication 255 

𝐳𝐳𝑏𝑏 = 𝐻𝐻(𝐱𝐱𝑏𝑏) = 𝐇𝐇𝐱𝐱𝑏𝑏           (11) 

in which H is an m×n matrix for which its first m columns form a unity matrix, while its remaining elements are 0. 

Eq. (8) describes the analysis xa, i.e. how the observations z are combined (assimilated) with the model xb. It is a balance 

between the model covariance and the observation covariances, described by the gain matrix K in Eq. (9). K determines how 

strong the analysis must incline towards the observations or remain at the simulated values, to obtain the lowest analysis error 260 

variance, Pa in Eq. (10). 

Note that Eq. (8)-(10) are analogous to the first step in Kalman filtering. The second step of the filter, propagating the analysis 

to the next time step, cannot be made here as the plume model solves a stationary state which is independent of the initial air 

pollutant concentration field. Also note that since we will use an approximated model error covariance matrix, generally these 

equations do not lead to an optimal analysis, hence this approach is more correctly referred to as Statistical Interpolation. 265 

Let vector c represent the observed NO2 mass concentrations, as described in Section 2.3. The distribution of the air pollutant 

concentrations resembles better the lognormal distribution than the Gaussian distribution, as can be seen from the Q-Q plots 

in Fig. 4. The analysis is therefore done in log-space (zj = ln cj), which converts lognormal distributions to Gaussian, for which 

the Bayesian assumptions behind Eq. (8)-(10) are valid. Once returning from the log domain, Eq. (8) can be rewritten as:  

𝐜𝐜𝑎𝑎 = exp(𝐱𝐱𝑎𝑎) = 𝐜𝐜𝑏𝑏exp(𝐊𝐊∆𝐳𝐳),   with innovation vector ∆𝐳𝐳 = 𝐳𝐳 − 𝐳𝐳𝑏𝑏      (12) 270 

By doing the analysis in the log-domain the assimilation updates correspond to multiplication instead of addition: exp(𝐊𝐊Δ𝐳𝐳) 

represents the local multiplication factor with which the simulated concentration cb is corrected. This means that the shape of 

the model field (e.g. strong gradients found close to busy roads) is locally preserved. Note that the error in zj corresponds to 

the relative error in cj : d𝑧𝑧 = d(ln𝑐𝑐) d𝑐𝑐⁄ = d𝑐𝑐/𝑐𝑐 . The observation error covariance matrix is therefore 𝑹𝑹 =

 diag(𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑚𝑚2 ), with σj the relative error corresponding to observation j. 275 

4.1 Modelling the model error covariance matrix  

For an optimal result in the data assimilation a realistic representation of the model covariance matrix Pb is essential. The 

model covariances influence the spatial representativity of the observations: when model errors correlate over larger distances, 

the assimilated observation will change the analysis over a longer range. Pb changes from hour to hour, mainly because varying 

meteorology changes the atmospheric dispersion properties. We estimate the model error covariance for each hour based on 280 
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the spatial coherence of the simulated concentration field. The covariance between two grid locations xi and xj can be expressed 

as their correlation 𝜌𝜌 and their standard deviations 𝜎𝜎: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑏𝑏  =  𝜎𝜎𝑖𝑖  𝜌𝜌(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) 𝜎𝜎𝑗𝑗           (13) 

The model error 𝜎𝜎 can only be evaluated at locations of the reference network using time series analysis. These model errors 

are spatially interpolated to other grid locations using IDW, analogous to Eq. (2)-(3). We assume the covariance to be isotropic 285 

(i.e. location independent) but inhomogeneous: we parametrize the covariance with a downwind correlation length Ldw and a 

crosswind correlation length Lcw. The extend of the correlation lengths reflect the turbulent diffusion and transport of the 

Gaussian dispersed plumes for a specific hour.  

From spatial analysis of the simulation data we see that the correlation depends on distance with a heuristic model 

𝜌𝜌(𝑑𝑑)  = exp�−√𝑑𝑑� ,           (14) 290 

with d the scaled distance between xi and xj (expressed as xdw and xcw along the downwind and crosswind axes) 

𝑑𝑑 = ��𝑥𝑥dw
𝐿𝐿dw
�
2

+ �𝑥𝑥cw
𝐿𝐿dw
�
2
,           (15) 

such that all points on an ellipse with semi-major axis Ldw and semi-minor axis Lcw have the same correlations. 

To fit the parameters Ldw and Lcw for a certain hour, we select 1000 sample locations from the road-following grid. To represent 

both polluted and less polluted areas, the locations are selected such that their concentrations are homogeneously distributed 295 

over the value range, excluding the first and last 5 percentile. For this sample, correlation lengths Ldw and Lcw are fitted using 

Eq. (14) and (15). 

Figure 5 shows the results of this analysis for two different hours. For fields with low gradients (e.g. when traffic contribution 

is low at night), large values of L can occur. To prevent assimilation instabilities, the fitted values of L are limited to a maximum 

of 10 km. During the 2016 summer months, longest correlation lengths are found for fields with low gradients. Average 300 

midnight values, when traffic contribution is low, are about 8 km. Correlation lengths are shortest during the morning rush 

hour (~1 km), increasing to 3 km during the late morning and afternoon. There is a wind dependency, as stronger winds stretch 

the pollution plumes, increasing correlation lengths. From the fit results we find an average ratio between Lcw and Ldw of 68%. 

Once the covariance parameters are known, the covariance matrix elements are calculated with Eq. (13). Note that for the 

calculation of the gain matrix K there is no need to calculate the full Pb matrix. Instead we calculate PbHT, which due to the 305 

structure of H this matrix product corresponds to the first m columns of the n×n matrix Pb. 

5 Validation of simulation and assimilation 

We validate the system for the period June 15 - August 15 in 2016 with hourly observations from station NL49019 (Oude 

Schans), located in the city centre and classified as an urban background site. We test (1) the ability to simulate the NO2 

concentrations at this location with the dispersion model, and (2) the effectiveness of the data assimilation when only 310 

measurements of the neighbouring reference stations are included in the assimilation (i.e. a leave-one-out approach). From the 
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results in Fig. 6 we see that the simulation describes the hourly observations with an RMSE of 11.7 μg/m3. The results improve 

considerably when the surrounding observations of the reference network are assimilated, taking advantage of the covariance 

between the observational information from nearby stations and the validation location. The error reduces to 7.6 μg/m3, while 

the correlation improves from 0.52 to 0.82. 315 

To assess the data quality across the domain, we perform a leave-one-out analysis at all locations of the reference network for 

the period June 1 - August 31, 2016. The results are summarized in Table 3. For the observation-free simulation (i.e. the model 

forecast) we find an average RMSE of 13.6 μg/m3 and correlation of 0.57. When assimilating observations, the average RMSE 

drops to 10.4 μg/m3 while the correlation increases to 0.78. Strong systematic underestimations of the simulation (characterized 

by a large negative bias) are observed at street locations NL49002, NL49007 and industrial locations NL49546, NL49704. 320 

These are most likely caused by unrealistic assumptions of local emissions of either traffic or industry. The strong positive 

bias found at NL49014, located in a city park separated from the nearby main road by a block of 4-storey buildings, might be 

explained by an incorrect simulation of air pollutants in the direct vicinity of these buildings. 

The CAMS regional ensemble analysis compares well with the average of the urban background stations; the very low bias (-

0.1 μg/m3) corresponds with the fact that data of these stations are used in its analysis. (Note that we use here the CAMS values 325 

corresponding to the Amsterdam grid cell, not the 3x3 minimum values used as background for the modelling.) On the other 

hand, it shows strong underestimations at street locations, as expected. It is here where the Retina simulation outperforms the 

low resolution results of CAMS. 

From Table 3 we can see that the relative error in the model forecast (defined as the ratio between the RMSE and the mean of 

the observations) is around 58% on average. When assimilating, the error becomes dependent on the distance to the nearest 330 

observation locations. For sites having the nearest assimilated observation within 2 km distance, the average RMSE drops 

from 16.8 to 11.9 μg/m3, corresponding to an average relative error of 39%. For sites where the nearest assimilated observation 

is further away than 2 km, the average RMSE drops from 10.8 to 9.1 μg/m3, corresponding to an average relative error of 53%. 

6 Added value of low costs sensors 

The previous analysis is purely based on high-quality reference measurements. In this section we explore whether the statistical 335 

interpolation scheme can be used to derive useful information of low-cost measurements, despite their larger inaccuracy.  

During the Urban AirQ campaign (see Section 2.3) sensor SD04 was mounted at 120 m distance from location NL49019. 

From the hourly time series in Fig. 6 it can be seen that including its sensor data in the assimilation leads to a better description 

of NO2 concentrations at location NL49019 than when assimilating with reference data alone. The RMSE drops from 7.6 

μg/m3 to 4.7 μg/m3, while the correlation improves from 0.82 to 0.92. 340 

Next, we use all reference data and all low-cost sensor data from the first half of the Urban AirQ campaign to construct a 

monthly averaged concentration map of Amsterdam, see Fig. 7. The addition of the low-cost data lowers the assimilation 

results by several μg/m3 in the undersampled area west of Oude Schans, while the NO2 increases with several μg/m3 around 
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the traffic arteries found south and east of this location. A large fraction of traffic on these roads uses the IJ-tunnel to cross the 

river. On a monthly basis, this tunnel is used by approximately one million vehicles. 345 

The second half of the Urban AirQ campaign coincides with the start of the summer holiday period and the closure of the IJ-

tunnel for maintenance. Comparison of the NO2 concentration maps of both periods reveal interesting features (Fig. 8). Overall, 

the NO2 concentrations drop around 10% due to reduced traffic during the summer break. Notable exception is the historic 

city center, where the NO2 reduction is only  a few percent, probably related to the steady economic activity driven by tourism. 

The strongest NO2 reductions, around 15%, are found around the access ways of the IJ-tunnel. A few main roads (e.g. De 350 

Ruijterkade/Piet Heinkade and Ceintuurbaan) show less NO2 reduction than average, apparently due to redirected traffic 

avoiding the tunnel. 

7 Discussion 

The validation analysis in Section 5 confirms that the CAMS ensemble is a good predictor for hourly NO2 concentrations 

found in the urban background. However, local effects can be better resolved when CAMS data is used for background 355 

concentrations in a dispersion model which is driven by proxies for traffic and residential emissions. 

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer 

2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias 

from 18.2 to 5.3 μg/m3. At urban background locations the dispersion model introduces often a positive bias, especially when 

traffic sources are nearby. This is probably related to the assumption of uniform surface roughness used by the dispersion 360 

model to account for the urban structure. A better description of street canyons in the model is likely to reduce this bias. Also 

unrealistic assumptions about chemical lifetime of NO2 (influencing the plume “length”) might play a role here. 

The Retina approach works best for areas where air pollution is dominated by transport and residential emissions. Significant 

inaccuracies will be found in areas dominated by local emissions (e.g. from industry, port and airport activity) which are not 

described adequately by the proxies. This can be addressed by including these sources explicitly in the dispersion modelling. 365 

The mapping results improve considerably with the second Retina step when available observations are assimilated by the 

statistical interpolation scheme. In general, the error of the assimilation results depends on the accuracy of air quality model, 

the number of assimilated observations, the quality of observations, and the distance to the observation location. When 

assimilating measurements of the reference network, the relative error in NO2 concentrations drop to 44% on average. The 

local error depends on the distance to the nearest observations: approximately 39% within 2 km of an observation site, 370 

increasing to 53% for larger distances. The typical correlation increases from 0.6 to 0.8. 

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is 

taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap. 

Traffic data tend to be harder to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should 

be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement 375 
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database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the 

necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets 

have to be found. 

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble 

forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction 380 

models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the 

European Centre for Medium-Range Weather Forecasts (ECMWF; not open data). 

8 Conclusions 

In this paper we have presented Retina, a practical approach to interpolating hourly urban air quality measurements. As air 

pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air quality 385 

model when aiming at street-level resolution. The first step of Retina consists of a simulation by a dispersion model which is 

driven by meteorological data and proxies for traffic and residential emissions. In the second step, observations of different 

accuracy are assimilated using a statistical interpolation scheme. 

A reasonable approximation of the model covariance matrix is found by assuming the model covariance to be isotropic and by 

fitting correlation lengths along the downwind and crosswind axes for every hour. Finding a more realistic description of the 390 

model covariance matrix may further improve the assimilation results, which will be subject of future research.  

Retina can be used for an enhanced understanding of reference measurements by deriving detailed observation-based 

concentration maps. The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data, 

in order to get improved localized information. However, biases must be removed beforehand with careful calibration, as most 

low-cost air quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018).  395 

The assimilation of low-cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration 

patterns in an area which is undersampled by the official network. The additional measurements correct for wrong assumptions 

in traffic emissions used in the apriori interpolation, and give better insight in how traffic rerouting (for instance due to closure 

of an arterial road) affects local air quality. 

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring 400 

and forecasting of NO2 in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the application of Retina to 

other cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter. 
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Figure 1: Map of the emission proxies used for the dispersion model. Red lines indicate the highways, green lines indicate the urban 
main roads. Grey colours indicate the population density. The locations of the reference measurement sites are indicated with the 505 
yellow dots. Units on the axes are in meters. (Road location data adopted from © OpenStreetMap contributors 2019. Distributed 
under a Creative Commons BY-SA License.)  

 

Figure 2: Weekly cycle of highways in the Amsterdam area, as opposed to the weekly cycle of urban roads. The morning and evening 
rush hours on working days are clearly visible for highways. Urban traffic has, apart from lower volume, less distinct peaks. The 510 
thick lines show the median of traffic flow for both road types. 
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Figure 3a: Dispersion maps of NO2 concentrations for each emission sector at 8 July 2016, 9:00. The lower right panel shows the 
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km/h.  
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 515 

Figure 3b: Comparison of observed and simulated NO2 time series for three different sites (marked with grey dots 
above): an urban background location, a street location, and a highway location. The colours indicate the simulated 
contribution of the three source sectors and the background.  
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 520 
Figure 4: (left) Distribution of the NO2 observations at reference station Oude Schans in July 2016 compared to a standard normal 
distribution. (right) The logarithm of the observed values correspond better to a Gaussian distribution, shown by the quantile value 
pairs being almost on a straight line. 
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525 

 
Figure 5: Simulated NO2 concentration fields at two different hours. The middle panels show the correlations along the downwind 
and crosswind axes. The right panels show and the spatial correlations of a sample (n=1000) and the resulting modeled spatial 
correlation model. Units are in meters. 
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 530 
Figure 6: (top) 8-day snapshot of NO2 time series of observation, simulation, and assimilation at location “Oude Schans”. 
Assimilation is performed with data from reference stations alone (green line), and with additional data from nearby low-cost sensor 
SD04 (blue line). (bottom) Scatter plots of observation against simulation and assimilation for the June 15 -August 15 2016 period. 
Statistics of the n data pairs are given in correlation (𝝆𝝆), coefficient of determination (R2), and RMSE. 
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Figure 7: (a) 30-day average of NO2 concentrations in the center of Amsterdam, after assimilation of both reference measurements 
(black dots) and low-cost measurements (white dots). (b) Changes in spatial pattern when low-cost measurements are included in 
the analysis. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA 
License.) 540 
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Figure 8: Reduction of NO2 during the holiday period. Largest reduction of concentrations is found in the vicinity of access ways to 
the IJ-tunnel, which was closed for maintenance. Concentrations in the historic center remain unchanged. (Basemap source: © 
Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.) 545 
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Table 1: Overview of AERMOD simulation settings 

Road width  20 m 

Emission height traffic 0.5 m 

Emission height residential 10 m 

Initial vertical extension of concentration 
layer (sigma Z0) 

10 m 

Receptor grid Road following 

Receptor height 1.5 m 

Urban surface roughness length 1 m 

NO2/NOX ratio Ozone Limited Method (OLM),  
Primary emission ratio 10% 

NOX lifetime 2 h 

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL) 
Address low wind speed conditions (LOWWIND3) 
Assuming flat terrain (FLAT) 
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Table 2: Summary of simulation input data for Amsterdam 550 

Emission Highway locations OpenStreetMap (OSM, 2017): street segments labelled 
motorway and trunk 

Urban road locations OpenStreetMap (OSM, 2017): street segments labelled 
primary, secondary, tertiary 

Highway traffic flow National Data Warehouse for Traffic Information (NDW, 
2019): weekly cycle of vehicle counts at 29 selected 
locations (2016), interpolated to street segments 

Urban traffic flow Amsterdam municipality (personal communication): weekly 
cycle of vehicle counts at 24 locations (2016), interpolated to 
street segments 

Population data Statistics Netherlands (CBS, 2016): population density 
(2014) gridded at 100 m resolution 

Observation Background NO2 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 
NO2 analysis from model ensemble; minimum value found in 
3x3 grid around domain center 

Background O3 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 
O3 analysis from model ensemble; mean value found in 3x3 
grid around domain center 

Meteorology Meteorology (surface) Integrated Surface Database (ISD, 2019): hourly 
observations from Schiphol Airport weather station 

Meteorology (upper air) Integrated Global Radiosonde Archive (IGRA, 2019): daily 
radio sounding at De Bilt (NL) 
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Table 3: Validation results at reference locations, June-August 2016 

ID name type n1) 

mean 

obs. 

CAMS ensemble Model forecast Assimilated observations 

RMSE2) bias corr RMSE2) bias corr RMSE2) bias corr dist3) 

NL49002 

Amsterdam - 

Haarlemmerweg street 2145 42.2 31.4 -25.6 0.49 22.6 -14.3 0.55 18.6 -14.5 0.83 0.99 

NL49007 

Amsterdam - 

Einsteinweg street 2145 38.1 29.2 -21.4 0.42 19.6 -6.9 0.57 16.5 -6.2 0.72 1.26 

NL49012 

Amsterdam - Van 

Diemenstr. street 2145 29.1 20.2 -12.5 0.53 15.7 -2.7 0.57 9.7 -0.5 0.87 0.99 

NL49017 

Amsterdam - 

Stadhouderskade street 2140 30.1 17.9 -13.5 0.45 14.3 1.9 0.50 9.0 -2.7 0.78 1.60 

NL49020 

Amsterdam - Jan 

van Galenstraat street 2131 34.8 24.0 -18.2 0.59 16.6 -4.7 0.58 11.1 -5.3 0.86 1.26 

NL49003 

Amsterdam - 

Nieuwend. dijk 

urban 

backgr. 2145 16.6 8.6 0.1 0.60 10.5 2.0 0.47 7.5 0.8 0.71 3.28 

NL49014 

Amsterdam - 

Vondelpark 

urban 

backgr. 2115 17.3 9.0 -0.7 0.52 14.9 7.9 0.44 9.9 6.5 0.75 1.73 

NL49019 

Amsterdam - Oude 

Schans 

urban 

backgr. 2124 20.7 10.3 -4.1 0.59 13.8 5.8 0.50 8.7 4.6 0.81 1.60 

NL49021 

Amsterdam - 

Kantershof 

urban 

backgr. 2082 14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 4.4 0.73 7.33 

NL49022 

Amsterdam - 

Sportp. Ookmeer 

urban 

backgr. 2124 14.3 8.4 2.4 0.65 9.2 3.4 0.66 8.0 3.7 0.80 3.89 

NL49565 

Oude Meer - 

Aalsmeerderdijk rural 2127 17.3 9.1 -0.6 0.57 9.0 -2.4 0.59 8.0 -3.0 0.73 5.94 

NL49703 

Amsterdam - 

Spaarnwoude rural 2125 13.0 8.7 3.7 0.61 8.1 2.1 0.60 7.5 2.4 0.71 4.47 

NL49546 Zaanstad - Hemkade industry 2145 22.9 14.3 -6.2 0.63 15.0 -8.1 0.66 13.0 -8.3 0.83 3.26 

NL49704 Zaanstad - Hoogtij industry 2120 19.6 12.7 -3.0 0.66 13.4 -6.0 0.72 12.1 -6.4 0.84 3.72 

NL49561 

Badhoevedorp - 

Sloterweg undecided 2145 20.5 10.6 -3.9 0.64 10.8 -2.9 0.61 8.9 -4.2 0.79 3.96 

Average street locations 34.9 24.5 -18.2 0.50 17.8 -5.3 0.55 13.0 -5.8 0.81  
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1) Number of samples 555 
2) In units μg/m3 
3) The distance to the nearest observation site, in km 

 

Average urban background locations 16.8 8.8 -0.1 0.60 11.8 4.9 0.53 8.4 4.0 0.76  

Average all locations 23.4 14.8 -6.8 0.57 13.6 -1.3 0.57 10.4 -1.9 0.78  
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