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Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not
well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality
models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary
information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward
because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors.
In this study, we present a practical approach to producing high spatio-temporal resolution maps of urban air pollution capable
of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality
model, driven by an open source atmospheric dispersion model and emission proxies from open data sources, and (2) a practical
spatial interpolation scheme, capable of assimilating observations with different accuracies.

The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO>) in Amsterdam, the Netherlands,
during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy of 39%
within 2 km of an observation location, and 53% at larger distances. When low-cost measurements of the Urban AirQ campaign
are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network.
During the summer holiday period, NO, concentrations drop about 10% due to reduced urban activity. The reduction is less in
the historic city center, while strongest reductions are found around the access ways to the tunnel connecting the northern and
the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow
is redirected to other main roads.

Overall, we show that Retina can be applied for an enhanced understanding of reference measurements, and as a framework

to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.

1 Introduction

Due to growing urbanization in the last decades, more than half of the world’s population lives in cities nowadays. Dense
traffic and other human activity, in combination with unfavourable meteorological conditions, often cause unhealthy air
pollution concentrations. Over 80% of the urban dwellers are forced to breathe air which does not meet the standards of the

World Health Organization (WHO, 2016). In 2015, an estimated 4.5 million people died prematurely from diseases attributed
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to ambient air pollution (Lelieveld et al., 2018). Good monitoring is important to better understand the local dynamics of air
pollution, to identify hot spots, and to improve the ability to anticipate events. This is especially relevant for nitrogen dioxide
(NO») concentrations, which can vary considerably from street to street. NO, is, apart from being a toxic gas on its own, an
important precursor of particulate matter, ozone, and other regional air pollutants. Observations from a single location are not
necessarily representative for a larger area. Unfortunately, urban air quality reference networks are usually sparse or even
absent due to their high installation and maintenance costs. New low-cost sensor technology, available for several years now,
has the potential to extend an official monitoring network significantly, even though the current generation of sensors have
significant lower accuracy (WMO, 2018).

However, adding value to the measurements (either official or unofficial), apart from publishing the data as dots on a map, is
not straightforward. Our aim is to make better use of the existing measurement networks to get the best description of hourly
urban air quality, and to create value from low-cost measurements towards a Level 4 product, according to the classification
proposed by Schneider et al. (2019)

To obtain high-resolution information, a very sparse observation network needs to be accompanied by a valid high-resolution
air quality model, whereas a very dense network can do with simple spatial interpolations. The situation in most large cities is
somewhere in between. There is often a reasonably large reference network present (10+ stations), sometimes complemented
with an experimental network of low-cost AQ sensors. Assumptions about underlying unresolved structures in the
concentration field are still needed, but this can be done with a simplified air quality model, using the available measurements
to correct simulation biases where needed.

A popular approach in detailed mapping of air quality is land use regression modelling (LURM), see e.g. Beelen et al. (2013).
LURM uses multiple linear regression to couple a broad variety of predictor variables (geospatial information such as traffic,
population, altitude, land use classes) to the observed concentrations. It is typically used in exposure studies, which target long
integration intervals by definition. Problems of over-fitting might arise when too many predictor variables are used.
Alternatively, Denby (2015) advocates the use of less proxy data, and a model based on more physical principles. In his
approach, the emission proxies are first (quasi) dispersed with a parameterized inverse distance function, before being coupled
to observed concentrations in a regression analysis.

Mapping of air pollution for short time scales is challenging. Only a few scientific studies are published aiming at assimilation
of near-real time observations in hourly urban concentration maps. Schneider et al. (2017) use Universal Kriging to combine
hourly NO; observations of 24 low-cost sensors in Oslo, Norway, with a time-invariant basemap. The basemap is created from
a yearly average concentration field calculated with an Eulerian/Lagrangian dispersion model on a 1 km grid, downscaled to
100 m resolution. Averaged over reference locations, their study shows that hourly values compare well with official values,
showing the potential of low-cost sensor data for complementary air quality information at these time scales.

In this paper, we present a more advanced yet practical approach to map hourly air pollutant concentrations, named Retina. Its
main system design considerations are:

e (Observation driven
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Able to assimilate observations of different accuracy
Potential near-real time application

Versatile / portable to other domains

Based on open data

Reasonable computer power

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological
conditions (described in Section 2) which is dynamically calibrated with recent measurements (Section 3). In the second stage
it assimilates current measurements using statistical interpolation (Section 4). Section 5 presents the validation of the system,
while Section 6 shows the added value when assimilating additional low-cost sensor measurements. Section 7 and 8 are
reserved for discussion, conclusion and outlook.

The method is applied to Amsterdam, a city like many where NO, emissions are dominated by transport and residential
emissions and where local exceedances of limit values are regularly observed. The methodology is flexible enough to be

applied to other cities, mainly because it is relatively easy to implement the urban model for a new domain.

2 Setting up a versatile urban air quality model

Amsterdam is the most populous city in the Netherlands, with an estimated population of 863,000. Located at 52°22'N 4°54'E,
it has a maritime climate with cool summers and moderate winters. Concentrations of NO, within the city vary considerably,
being partly produced locally and partly transported from outside the city. Measurements of 2016 show that, compared with
regional background values from the CAMS ensemble (see Section 2.2.3), urban background concentrations are on average
around 50% higher, while at road sides NO; concentrations are about 100% higher.

One of the largest unknowns when modelling urban air quality is a detailed, up-to-date emission inventory capable of
describing the local contribution. For cities such as Amsterdam the local emissions are dominated by the transport and
residential sector. This is confirmed by the EDGAR HTAP v2 emission inventory (Janssens-Maenhout et al., 2013), which
estimates the contribution of NOx emissions in a 20 x 33 km? (0.3 degree) area around the center being 62%, 20%, 12%, and
6% for the sectors transport, residential, energy, industry respectively. Especially the contribution of road transport is relevant,
as its emissions are close to the ground in densely populated areas. We will use traffic information and population density as
proxies for urban emission (see Section 2.2.1 and 2.2.2).

In contrast to the regional atmosphere, the urban atmosphere is more dominated by dispersion processes, while many chemical
reactions are less important due to a relatively short residence time (Harrison, 2018). For the dispersion of the emission sources,
we use the open source steady-state plume model AERMOD (Cimorelli et al., 2004), developed by the American
Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). Based on the emission inventory
and meteorology (see Section 2.2.4), AERMOD calculates hourly concentrations of air pollutants. The concentration
distribution of an emission source is assumed to be Gaussian both horizontally as vertically when boundary layer conditions

are stable. In a convective boundary layer, the vertical distribution is described by a bi-Gaussian probability density function.

3
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2.1 AERMOD simulation settings

We use AERMOD version 16216r with simulation settings summarized in Table 1, operating on a rectangular domain of 18 x
22 km? covering the municipality of Amsterdam for the most part. All coordinates are reprojected to a local equidistant
coordinate system with the city center as projection center. Instead of using a regular grid, we use a road-following grid
(Lefebre et al., 2011). This reduces the number of receptor points, while maintaining accurate description of strong gradients
found close to roads. Grid points are defined at 25 and 50 m distances perpendicular to roads, and at parallel distances of 75
and 125 m respectively. The open spaces between these grid points are filled with a regular grid at 125 m resolution. Roads
are modelled as line sources, while residential emissions are described as area sources. The dispersion is calculated for NOx
to avoid a detailed analysis of the rapid cycling between its constituents NO and NO». Afterwards, an NO»/NOx ratio is applied,
depending on the available ozone (O3), see Section 2.1.1.

Memory usage of AERMOD for the Amsterdam domain is proportional to the total number of emission source elements (here
17,069 road fragments and 12,182 residential squares) and the number of receptor points in the road-following grid (here
42,128). The calculation time for a single concentration field is around 10 minutes, but can be reduced to a fraction of this by

parallelizing the code.

2.1.1 Ozone chemistry and lifetime

Primary emissions of NO; (e.g. directly from the tailpipe) are only 5-10% of the total emitted NOx (Sokhi et al., 2007). At
short time scales, secondary NO; is formed by oxidation of NO with O3, while this reaction is counterbalanced by photolysis
converting NO> to NO. The reaction rate of the first reaction is temperature dependent, while the latter depends on the available
sunlight. The NO»/NOx ratio has therefore an intricate dependence on temperature, radiation, and the proximity to the source
(i.e. the travel time of the air mass since emission).

A practical approach to estimate this ratio is the Ozone Limited Method (OLM), as described in EPA (2015). The method uses
ambient O3 to determine how much NO is converted to NO». The dispersed (locally produced) NOx concentration is divided
into two components: the primary emitted NO; (here assumed to be 10%), and the remaining NOx which is assumed to be all
NO available for reaction with ambient O3: NO+O3; — NO,+O,. If the mixing ratio of ozone (O3) is larger than the 90% of
(NOx), than all NO is converted to NO». Otherwise, the amount of NO converted is equal to the available O3, i.e. (NO») =
0.1(NOx) + (0O3). The reaction is assumed to be instantaneous and irreversible. The resulting NO, concentration is added to
the NO, background concentration.

Removal processes of NOx are modeled with an exponential decay. The chemical lifetime is in the order of a few hours. Liu
et al. (2016) find NOx lifetimes in a range from 1.8 to 7.5 h using satellite observations over cities in China and the USA.
Given the size of our domain and average wind speeds, its exact value is not of great importance. Based on regression results,

we choose a practical value of 2 hour.
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2.2 Simulation input data

The dispersion simulation is driven by input data regarding emissions, background concentrations, and meteorology, listed in
Table 2. All data, except for the traffic counts of inner city traffic, are taken from open data portals. The emission proxies are

mapped in Fig. 1.

2.2.1 Traffic emissions

Road location data and road type definition data are taken from OpenStreetMap (OSM, 2017), which is a crowd-source project
to create a free editable map of the world. We separate urban roads (labeled in OSM as “primary”, “secondary”, and “tertiary”)
and highways (labeled as “motorway” and “trunk™), as they have a distinct traffic pulse, fleet composition, and driving
conditions. Road segments labeled as “tunnel” are not taken into account.

When the traffic flow ¢ (in vehicles per hour) is known, the emission rate E for a road segment / can be written as

E = ayenql (1)

with emission factor ayen representing the (unknown) NOx emission per unit length per vehicle. Hourly traffic flow data is
taken from 29 representative highway locations from the National Data Warehouse for Traffic Information (NDW, 2019),
which contains both real-time and historic traffic data. For the urban traffic flow we use data from 24 inductive loop counters
provided by the traffic research department of Amsterdam municipality. Due to its large numbers, traffic flow is relatively
well predictable, especially when lower volumes during holiday periods and occasional road closures are neglected. For each
location we construct a traffic “climatology” parametrized by hour and weekday, based on hourly data of 2016, see Fig. 2.
Traffic counts correlate strongly between different highway locations, all showing a strong commuting and weekend effect.
Urban traffic typically shows, apart from lower volumes, less reduction between morning and evening rush hours, a less
pronounced weekend effect, and higher traffic intensities on Friday and Saturday night.

For locations x between the counting locations x; the traffic flow ¢(x) is spatially interpolated by inverse distance weighting

(IDW):

Ziwi®q; . _ .
q(x) =14 Ziwi® ’ if d(x,x;) # 0 forall i @
qi, ifd(x,x;) = 0 for some i

in which the weighting factors w; depend on the distance d between x and the counting location x;:

1
Wi = s 3

2.2.2 Population data

Population density is considered to be a good proxy for residential emissions, e.g. from cooking and heating. Here we take
data from the gridded population database of 2014, compiled by the national Central Bureau for Statistics (CBS, 2019) at a

100 m resolution. Each grid cell is offered to the dispersion model as a separate area source. To reflect the observation that
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residential emissions per capita are less when people are living closer to each other (Makido et al., 2012), the emission fluxes

are taken proportional to the square root of the population density p:

E = apopy/p )

2.2.3 Background concentrations

As AERMOD only describes the local contribution to air pollution, we add background concentrations which are taken from
the Copernicus Atmosphere Monitoring Service (CAMS) European air quality ensemble (Marécal et al., 2015). The CAMS
ensemble consists of 7 regional models producing hourly air quality and atmospheric composition forecasts on a 0.1 x 0.1
degree resolution. The analysis of the ensemble is based on the assimilation of 1-day old observations provided by the European
Environment Agency (EEA). Each model has its own data assimilation system.

In the CAMS product the local contributions are already present. To get a better estimate for regional background
concentrations avoiding double counts, we take the lowest concentration found in a 0.3 x 0.3 degree area around the city for

NO, and the mean concentration found in this area for Os.

2.2.4 Meteorological data

The dispersion of air pollution is strongly governed by local meteorological parameters, especially the winds driving the
horizontal advection and the characterization of the boundary layer which defines the vertical mixing. Meteorology also affects
the chemical lifetime of pollutants.

We use AERMET (EPA, 2019) as a meteorological pre-processor for organizing available data into a format suitable for use
by the AERMOD model. AERMET requires both surface and upper air meteorological data, but is designed to run with a
minimum of observed meteorological parameters. Vertical profiles of wind speed, wind direction, turbulence, temperature,
and temperature gradient are estimated using all available meteorological observations, and extrapolated using similarity
(scaling) relationships where needed (EPA, 2018).

Hourly surface data from the nearby Schiphol airport weather station can be obtained from the Integrated Surface Database
(ISD, see Smith et al. (2011)). We retrofit observations of temperature, winds, cloud cover, relative humidity, pressure, and
precipitation to the SAMSON data format (WebMet, 2019a) which is supported by AERMET. Upper air observations are
taken from daily radiosonde observations in De Bilt (at 35 km from Amsterdam), archived in the Integrated Global Radiosonde
Archive (IGRA) (Durre et al., 2006). We convert pressure, geopotential height, temperature, relative humidity, dew point
temperature, wind speed and direction to the TD6201 data format (WebMet, 2019b) for each reported level up to 300 hPa.

2.3 Air quality measurements

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam

area. Within the domain used in this study their NO, network consists of 15 reference stations: 5 stations classify as road
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station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API
200E and a Thermo Electron 421 NO/NOx analyser, both based on chemiluminescence. A catalytic-reactive converter converts
NO:; in the sample gas to NO, which, along with the NO present in the sample is reported as NOx. NO; is calculated as the
difference between NOx and NO. Laboratory calibration estimates the combined uncertainty of hourly NO, measurement at
3.7% (GGD, 2014).

Low-cost NO, measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality
sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month
measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by
Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a
membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by
using low-noise interface electronics. The sensor devices were carefully calibrated in Mijling et al. (2017), solving issues

related to sensor drift and temperature dependence. After calibration, they are found to have a typical accuracy of 30%.

3 Calibrating the model

Using proxy data instead of real emission introduces the problem to find the emission factors which best relate the activity
data to their corresponding emissions. Instead of using theoretical values or values found in literature, we derive effective
values which best fit the hourly averaged NO; observations of a network of N stations.

For a certain hour 7, the emission of a source element i belonging to source sector £ can be written as

Ey () = ap Py (1) (5)

in which Py represent the corresponding emission proxy. The contribution of this source to the concentration at a receptor
location j is

Cijre(t) = fij () Ey (£) (6)

with f;; describing the dispersion of a unit emission from i to j. We apply a regression analysis for a certain period, assuming
that for each ¢ the total NO, concentration ¢; at station j can be described as a background field » and a local contribution
consisting of a linear combination of the dispersed fields of K emission sectors:

6 (6) = b(0) + Doy a T} fiy (OPu (D) ™

Sk represents the number of source elements for an emission sector k. The second sum in this equation is calculated for every
hour with the Gaussian dispersion model taking the meteorological conditions during ¢ into account. Note that both background
concentrations b(f) and local concentrations c¢;(¢) are observed quantities, see Section 2.2.3 and 2.3. Considering a period of 7
hours, Eq. (7) can be interpreted as a matrix equation from which the emission factors ax can be solved using ordinary least

squares. Given the physical meaning of ax, only positive regression results are allowed.
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Note that our linearity assumption in Eq. (6) works best when relating NOx emissions to NOx concentrations. The non-linearity
introduced by the variable NO»/NOx ratio (here determined within AERMOD by OLM) is assumed to be sufficiently weak
for this assumption to remain valid.

In our setup, the emissions are approximated by three sectors highway traffic, urban traffic, and population density (K=3). The
resulting ax do not necessarily represent real emission factors. Their values partly compensate for unaccounted emission sectors
and unrealistic modelling (e.g. based on wrong traffic data or an incorrect chemical lifetime). In Retina we update a; every 24
hours, based on observations of the preceding week (7=168). Doing so, the periodic calibration adjusts itself to seasonal cycles
and episodes not captured by the climatologies (e.g. cold spells or holiday periods). To avoid reducing the predictability of the
regression model too much (ax dropping to zero), we do not use all reference stations for calibration, but only stations classified
as roadside or urban background. For the Amsterdam network, N=11. The residential emissions are represented by the
population density, which is a time invariant proxy. To allow for a diurnal cycle, the residential emission factor is evaluated
for two-hour bins. This brings the total number of fitted emission factors to 14: one for highway traffic, one for urban traffic,
and 12 describing the daily residential emission cycle.

Figure 3 shows an example of the air quality simulation after the emission factors have been determined. The stacked colours
in the time series show that the contribution from different emission sectors to local air pollution can strongly vary from site

to site.

4 Assimilation of observations

As the air quality network is spatially undersampling the urban area, we need to combine the observations with additional
model information to preserve the fine local structures in air pollutant concentrations. From the various geostatistical
techniques available we choose Optimal Interpolation (OI) (Daley, 1991), having the desired property that the Bayesian
approach allows for assimilation of heterogencous measurements with different error bars. At an observation location the
model value is corrected towards the observation, the innovation depending on the balance between the observation error and
the simulation error. The error covariances determine how the simulation in the surroundings of this location is adjusted.
Outside the representativity range (i.e. the correlation length) of the observations, the analysis relaxes to the model values.

Consider a state vector x representing air pollutant concentrations on the (road-following) receptor grid (n~40,000). Define x°

as the background, i.e. the model simulation. Observation vector z contains m measurements, typically 10 - 100. Following

the convention by Ide et al. (1997), the OI algorithm can now be written as:

x* = x? + K(z - H(x?)) 8)
K = PPHT(HP?HT + R)! )
P4 = (I — KH)P? (10)

Matrix R is the mxm observation error covariance matrix. As all observations are independent (the measurement errors are

uncorrelated), R is a diagonal matrix with the measurement variances on its diagonal.

8
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P? is the nxn model error covariance matrix, describing how model errors are spatially correlated. The calculation of P? is not
straightforward; in Section 4.1 an approximation is derived.

Operator H is the forward model, which maps the model state to the observed variables and locations. We can simplify the
matrix calculations by reserving the first m elements of the state vector for the observation locations, and the other n —
m elements for the road-following grid. The Gaussian dispersion model is evaluated “in-situ” at the observation locations.
Avoiding reprojection or interpolation means that there are no representation errors associated with H. The simulations at the
observation locations z’ can then be written as a matrix multiplication

z? = H(x?) = Hx? (11)

in which H is an mxn matrix for which its first m columns form a unity matrix, while its remaining elements are 0.

Eq. (8) describes the analysis x¢, i.e. how the observations z are combined (assimilated) with the model x’. It is a balance
between the model covariance and the observation covariances, described by the gain matrix K in Eq. (9). K determines how
strong the analysis must incline towards the observations or remain at the simulated values, to obtain the lowest analysis error
variance, P? in Eq. (10).

Note that Eq. (8)-(10) are analogous to the first step in Kalman filtering. The second step of the filter, propagating the analysis
to the next time step, cannot be made here as the plume model solves a stationary state which is independent of the initial air
pollutant concentration field. Also note that since we will use an approximated model error covariance matrix, generally these
equations do not lead to an optimal analysis, hence this approach is more correctly referred to as Statistical Interpolation.

Let vector ¢ represent the observed NO, mass concentrations, as described in Section 2.3. The distribution of the air pollutant
concentrations resembles better the lognormal distribution than the Gaussian distribution, as can be seen from the Q-Q plots
in Fig. 4. The analysis is therefore done in log-space (z;= In ¢;), which converts lognormal distributions to Gaussian, for which
the Bayesian assumptions behind Eq. (8)-(10) are valid. Once returning from the log domain, Eq. (8) can be rewritten as:

c® = exp(x%) = cPexp(KAz), with innovation vector Az = z — z° (12)

By doing the analysis in the log-domain the assimilation updates correspond to multiplication instead of addition: exp(KAz)
represents the local multiplication factor with which the simulated concentration ¢ is corrected. This means that the shape of
the model field (e.g. strong gradients found close to busy roads) is locally preserved. Note that the error in z; corresponds to
the relative error in ¢; : dz = d(Inc)/dc =dc/c . The observation error covariance matrix is therefore R =

diag(o?, 0%, ..., 02), with g; the relative error corresponding to observation ;.

4.1 Modelling the model error covariance matrix

For an optimal result in the data assimilation a realistic representation of the model covariance matrix P’ is essential. The
model covariances influence the spatial representativity of the observations: when model errors correlate over larger distances,
the assimilated observation will change the analysis over a longer range. P changes from hour to hour, mainly because varying

meteorology changes the atmospheric dispersion properties. We estimate the model error covariance for each hour based on
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the spatial coherence of the simulated concentration field. The covariance between two grid locations x; and x; can be expressed
as their correlation p and their standard deviations o

Pg‘ = Uip(xi’xj) Oj (13)
The model error o can only be evaluated at locations of the reference network using time series analysis. These model errors
are spatially interpolated to other grid locations using IDW, analogous to Eq. (2)-(3). We assume the covariance to be isotropic
(i.e. location independent) but inhomogeneous: we parametrize the covariance with a downwind correlation length Lgw and a
crosswind correlation length L.y. The extend of the correlation lengths reflect the turbulent diffusion and transport of the
Gaussian dispersed plumes for a specific hour.

From spatial analysis of the simulation data we see that the correlation depends on distance with a heuristic model

p(d) =exp(—Vd), (14)
with d the scaled distance between x; and x; (expressed as xq4w and xcw along the downwind and crosswind axes)
2 2
— [(%aw Tew
d = (de) + (de) > (1 5)

such that all points on an ellipse with semi-major axis Lq4w and semi-minor axis Lcy have the same correlations.

To fit the parameters Lqw and Ly for a certain hour, we select 1000 sample locations from the road-following grid. To represent
both polluted and less polluted areas, the locations are selected such that their concentrations are homogeneously distributed
over the value range, excluding the first and last 5 percentile. For this sample, correlation lengths L4w and L.y are fitted using
Eq. (14) and (15).

Figure 5 shows the results of this analysis for two different hours. For fields with low gradients (e.g. when traffic contribution
is low at night), large values of L can occur. To prevent assimilation instabilities, the fitted values of L are limited to a maximum
of 10 km. During the 2016 summer months, longest correlation lengths are found for fields with low gradients. Average
midnight values, when traffic contribution is low, are about 8 km. Correlation lengths are shortest during the morning rush
hour (~1 km), increasing to 3 km during the late morning and afternoon. There is a wind dependency, as stronger winds stretch
the pollution plumes, increasing correlation lengths. From the fit results we find an average ratio between Lcw and Law of 68%.
Once the covariance parameters are known, the covariance matrix elements are calculated with Eq. (13). Note that for the
calculation of the gain matrix K there is no need to calculate the full P’ matrix. Instead we calculate PPH", which due to the

structure of H this matrix product corresponds to the first 7 columns of the nX#n matrix P?.

5 Validation of simulation and assimilation

We validate the system for the period June 15 - August 15 in 2016 with hourly observations from station NL49019 (Oude
Schans), located in the city centre and classified as an urban background site. We test (1) the ability to simulate the NO»
concentrations at this location with the dispersion model, and (2) the effectiveness of the data assimilation when only

measurements of the neighbouring reference stations are included in the assimilation (i.e. a leave-one-out approach). From the

10
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results in Fig. 6 we see that the simulation describes the hourly observations with an RMSE of 11.7 pg/m>. The results improve
considerably when the surrounding observations of the reference network are assimilated, taking advantage of the covariance
between the observational information from nearby stations and the validation location. The error reduces to 7.6 pug/m?, while
the correlation improves from 0.52 to 0.82.

To assess the data quality across the domain, we perform a leave-one-out analysis at all locations of the reference network for
the period June 1 - August 31, 2016. The results are summarized in Table 3. For the observation-free simulation (i.e. the model
forecast) we find an average RMSE of 13.6 pg/m? and correlation of 0.57. When assimilating observations, the average RMSE
drops to 10.4 pg/m> while the correlation increases to 0.78. Strong systematic underestimations of the simulation (characterized
by a large negative bias) are observed at street locations NL49002, NL49007 and industrial locations NL49546, NL49704.
These are most likely caused by unrealistic assumptions of local emissions of either traffic or industry. The strong positive
bias found at NL49014, located in a city park separated from the nearby main road by a block of 4-storey buildings, might be
explained by an incorrect simulation of air pollutants in the direct vicinity of these buildings.

The CAMS regional ensemble analysis compares well with the average of the urban background stations; the very low bias (-
0.1 pg/m?) corresponds with the fact that data of these stations are used in its analysis. (Note that we use here the CAMS values
corresponding to the Amsterdam grid cell, not the 3x3 minimum values used as background for the modelling.) On the other
hand, it shows strong underestimations at street locations, as expected. It is here where the Retina simulation outperforms the
low resolution results of CAMS.

From Table 3 we can see that the relative error in the model forecast (defined as the ratio between the RMSE and the mean of
the observations) is around 58% on average. When assimilating, the error becomes dependent on the distance to the nearest
observation locations. For sites having the nearest assimilated observation within 2 km distance, the average RMSE drops
from 16.8 to 11.9 pg/m?, corresponding to an average relative error of 39%. For sites where the nearest assimilated observation

is further away than 2 km, the average RMSE drops from 10.8 to 9.1 pg/m?, corresponding to an average relative error of 53%.

6 Added value of low costs sensors

The previous analysis is purely based on high-quality reference measurements. In this section we explore whether the statistical
interpolation scheme can be used to derive useful information of low-cost measurements, despite their larger inaccuracy.
During the Urban AirQ campaign (see Section 2.3) sensor SD04 was mounted at 120 m distance from location NL49019.
From the hourly time series in Fig. 6 it can be seen that including its sensor data in the assimilation leads to a better description
of NO; concentrations at location NL49019 than when assimilating with reference data alone. The RMSE drops from 7.6
ug/m? to 4.7 ug/m?3, while the correlation improves from 0.82 to 0.92.

Next, we use all reference data and all low-cost sensor data from the first half of the Urban AirQ campaign to construct a
monthly averaged concentration map of Amsterdam, see Fig. 7. The addition of the low-cost data lowers the assimilation

results by several pg/m? in the undersampled area west of Oude Schans, while the NO; increases with several pug/m? around
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the traffic arteries found south and east of this location. A large fraction of traffic on these roads uses the 1J-tunnel to cross the
river. On a monthly basis, this tunnel is used by approximately one million vehicles.

The second half of the Urban AirQ campaign coincides with the start of the summer holiday period and the closure of the 1J-
tunnel for maintenance. Comparison of the NO, concentration maps of both periods reveal interesting features (Fig. 8). Overall,
the NO; concentrations drop around 10% due to reduced traffic during the summer break. Notable exception is the historic
city center, where the NO; reduction is only a few percent, probably related to the steady economic activity driven by tourism.
The strongest NO, reductions, around 15%, are found around the access ways of the IJ-tunnel. A few main roads (e.g. De
Ruijterkade/Piet Heinkade and Ceintuurbaan) show less NO; reduction than average, apparently due to redirected traffic

avoiding the tunnel.

7 Discussion

The validation analysis in Section 5 confirms that the CAMS ensemble is a good predictor for hourly NO concentrations
found in the urban background. However, local effects can be better resolved when CAMS data is used for background
concentrations in a dispersion model which is driven by proxies for traffic and residential emissions.

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer
2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias
from 18.2 to 5.3 pg/m>. At urban background locations the dispersion model introduces often a positive bias, especially when
traffic sources are nearby. This is probably related to the assumption of uniform surface roughness used by the dispersion
model to account for the urban structure. A better description of street canyons in the model is likely to reduce this bias. Also
unrealistic assumptions about chemical lifetime of NO> (influencing the plume “length”) might play a role here.

The Retina approach works best for areas where air pollution is dominated by transport and residential emissions. Significant
inaccuracies will be found in areas dominated by local emissions (e.g. from industry, port and airport activity) which are not
described adequately by the proxies. This can be addressed by including these sources explicitly in the dispersion modelling.
The mapping results improve considerably with the second Retina step when available observations are assimilated by the
statistical interpolation scheme. In general, the error of the assimilation results depends on the accuracy of air quality model,
the number of assimilated observations, the quality of observations, and the distance to the observation location. When
assimilating measurements of the reference network, the relative error in NO; concentrations drop to 44% on average. The
local error depends on the distance to the nearest observations: approximately 39% within 2 km of an observation site,
increasing to 53% for larger distances. The typical correlation increases from 0.6 to 0.8.

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is
taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap.
Traffic data tend to be harder to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should

be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement
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database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the
necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets
have to be found.

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble
forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction
models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the

European Centre for Medium-Range Weather Forecasts (ECMWF; not open data).

8 Conclusions

In this paper we have presented Retina, a practical approach to interpolating hourly urban air quality measurements. As air
pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air quality
model when aiming at street-level resolution. The first step of Retina consists of a simulation by a dispersion model which is
driven by meteorological data and proxies for traffic and residential emissions. In the second step, observations of different
accuracy are assimilated using a statistical interpolation scheme.

A reasonable approximation of the model covariance matrix is found by assuming the model covariance to be isotropic and by
fitting correlation lengths along the downwind and crosswind axes for every hour. Finding a more realistic description of the
model covariance matrix may further improve the assimilation results, which will be subject of future research.

Retina can be used for an enhanced understanding of reference measurements by deriving detailed observation-based
concentration maps. The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data,
in order to get improved localized information. However, biases must be removed beforehand with careful calibration, as most
low-cost air quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018).

The assimilation of low-cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration
patterns in an area which is undersampled by the official network. The additional measurements correct for wrong assumptions
in traffic emissions used in the apriori interpolation, and give better insight in how traffic rerouting (for instance due to closure
of an arterial road) affects local air quality.

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring
and forecasting of NO; in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the application of Retina to

other cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter.
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Figure 1: Map of the emission proxies used for the dispersion model. Red lines indicate the highways, green lines indicate the urban

505 main roads. Grey colours indicate the population density. The locations of the reference measurement sites are indicated with the
yellow dots. Units on the axes are in meters. (Road location data adopted from © OpenStreetMap contributors 2019. Distributed
under a Creative Commons BY-SA License.)

Weekly traffic cycle for Amsterdam
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Figure 2: Weekly cycle of highways in the Amsterdam area, as opposed to the weekly cycle of urban roads. The morning and evening
510 rush hours on working days are clearly visible for highways. Urban traffic has, apart from lower volume, less distinct peaks. The
thick lines show the median of traffic flow for both road types.
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Figure 3a: Dispersion maps of NO2 concentrations for each emission sector at 8§ July 2016, 9:00. The lower right panel shows the
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km/h.
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Figure 3b: Comparison of observed and simulated NO: time series for three different sites (marked with grey dots
above): an urban background location, a street location, and a highway location. The colours indicate the simulated
contribution of the three source sectors and the background.
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Figure 4: (left) Distribution of the NO: observations at reference station Oude Schans in July 2016 compared to a standard normal
distribution. (right) The logarithm of the observed values correspond better to a Gaussian distribution, shown by the quantile value
pairs being almost on a straight line.
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Figure 5: Simulated NO: concentration fields at two different hours. The middle panels show the correlations along the downwind
and crosswind axes. The right panels show and the spatial correlations of a sample (n=1000) and the resulting modeled spatial
correlation model. Units are in meters.

22



530

535

https://doi.org/10.5194/amt-2019-410 Atmospheric
Preprint. Discussion started: 17 December 2019 Measurement
(© Author(s) 2019. CC BY 4.0 License. Techniques

Discussions
By

Validation at location NL49019 "Oude Schans"

7 —— observation at NL49019  —=— simulation =~ —s— assim. without SD04  —e— assim. with SD04

concentration NO2 [ug/m3]

T T T T T T T T
2016-07-07 2016-07-08 2016-07-09 2016-07-10 2016-07-11 2016-07-12 2016-07-13 2016-07-14

80

Observation vs Simulation Observation vs Assimilation without SD04 Observation vs Assimilation with SD04
g 80 .

p=0.519, R?= —0.339, AMSE=11.72 p=0.821, R?=0.432, RMSE = 7.63 p=0.917, R?=0.783, RMSE = 4.72
704 n= 1358 - . °

n=1358 | n=1358

=3 ~
o =]
L
@ ~
o (=]
L

w
=}
L
%
=}
L

w
=1
L

simulation NO2 [ug/m3]
W
[=]
,

assimilation NO2 [ug/m3]
™
(=]

!
assimilation NO2 [ug/m3]
)

o
|

~
o
L
N
=3
L

H
o
L

10 4

o

: —— : : : . . : : —— : : 0+ — : : ——
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80
observation NO2 [ug/m3] observation NO2 [ug/m3] observation NO2 [ug/m3]

o

Figure 6: (top) 8-day snapshot of NO: time series of observation, simulation, and assimilation at location “Oude Schans”.
Assimilation is performed with data from reference stations alone (green line), and with additional data from nearby low-cost sensor
SDO04 (blue line). (bottom) Scatter plots of observation against simulation and assimilation for the June 15 -August 15 2016 period.
Statistics of the n data pairs are given in correlation (p), coefficient of determination (R*), and RMSE.
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(a) GGD + UrbanAirQ [15 Jun 2016 - 15 Jul 2016] (b) Update wrt GGD-only [15 Jun 2016 - 15 Jul 2016]
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Figure 7: (a) 30-day average of NO2 concentrations in the center of Amsterdam, after assimilation of both reference measurements

(black dots) and low-cost measurements (white dots). (b) Changes in spatial pattern when low-cost measurements are included in

the analysis. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA
540 License.)
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Figure 8: Reduction of NO: during the holiday period. Largest reduction of concentrations is found in the vicinity of access ways to
the 1J-tunnel, which was closed for maintenance. Concentrations in the historic center remain unchanged. (Basemap source: ©
545 Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.)
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Table 1: Overview of AERMOD simulation settings

Road width 20 m

Emission height traffic 0.5m

Emission height residential 10 m

Initial vertical extension of concentration 10 m

layer (sigma Zo)

Receptor grid Road following

Receptor height I.5m

Urban surface roughness length I m

NO»/NOx ratio Ozone Limited Method (OLM),
Primary emission ratio 10%

NOx lifetime 2h

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL)
Address low wind speed conditions (LOWWIND?3)
Assuming flat terrain (FLAT)
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550 Table 2: Summary of simulation input data for Amsterdam

Emission Highway locations OpenStreetMap (OSM, 2017): street segments labelled
motorway and trunk

Urban road locations OpenStreetMap (OSM, 2017): street segments labelled
primary, secondary, tertiary

Highway traffic flow National Data Warehouse for Traffic Information (NDW,
2019): weekly cycle of vehicle counts at 29 selected
locations (2016), interpolated to street segments

Urban traffic flow Amsterdam municipality (personal communication): weekly
cycle of vehicle counts at 24 locations (2016), interpolated to
street segments

Population data Statistics Netherlands (CBS, 2016): population density
(2014) gridded at 100 m resolution

Observation Background NO; Copernicus Atmosphere Monitoring Service (CAMS, 2019):
NO; analysis from model ensemble; minimum value found in
3x3 grid around domain center

Background O; Copernicus Atmosphere Monitoring Service (CAMS, 2019):
O3 analysis from model ensemble; mean value found in 3x3
grid around domain center

Meteorology Meteorology (surface) Integrated Surface Database (ISD, 2019): hourly
observations from Schiphol Airport weather station

Meteorology (upper air) Integrated Global Radiosonde Archive (IGRA, 2019): daily
radio sounding at De Bilt (NL)
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Table 3: Validation results at reference locations, June-August 2016

Atmospheric
Measurement

Techniques

Discussions

CAMS ensemble Model forecast Assimilated observations
mean

ID name type n" obs. |RMSE? [bias [corr |RMSE? |bias |corr [RMSE? |bias |corr |[dist®
Amsterdam -

NL49002 |Haarlemmerweg street 2145 1422 31.4 -25.6 1049 [22.6 -143 10.55 |[18.6 -14.5 10.83 [0.99
Amsterdam -

NL49007 |Einsteinweg street 2145 |38.1 29.2 -21.4 1042 19.6 -6.9 10.57 [16.5 -6.2 1072 [1.26
Amsterdam - Van

NL49012 |Diemenstr. street 2145 129.1 20.2 -12.5 10.53 15.7 2.7 1057 9.7 -0.5 10.87 [0.99
Amsterdam -

NL49017 |Stadhouderskade street 2140 |30.1 17.9 -13.5 1045 14.3 1.9 0.50 19.0 2.7 10.78 [1.60
Amsterdam - Jan

NL49020 |van Galenstraat street 2131 |34.8 24.0 -18.2 10.59 16.6 -47 1058 |11.1 -53 1086 [1.26
Amsterdam - urban

NL49003 [Nieuwend. dijk backgr. 2145 |16.6 8.6 0.1 0.60 10.5 2.0 047 |75 0.8 0.71 ]3.28
Amsterdam - urban

NL49014 |Vondelpark backgr. [2115 |17.3 9.0 -0.7 0.52 14.9 7.9 044 199 6.5 0.75 1.73
Amsterdam - Oude |urban

NL49019 [Schans backgr. (2124 |20.7 10.3 -4.1 0.59 13.8 5.8 0.50 8.7 4.6 0.81 1.60
Amsterdam - urban

NL49021 |Kantershof backgr. (2082 |14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 44 0.73 |7.33
Amsterdam - urban

NL49022 [Sportp. Ookmeer backgr. 2124 |14.3 8.4 24 0.65 (9.2 34 0.66 8.0 3.7 0.80 13.89
Oude Meer -

NL49565 |Aalsmeerderdijk rural 2127 |17.3 9.1 -0.6 0.57 [9.0 24 1059 |[8.0 -3.0 ]0.73 [5.94
Amsterdam -

NL49703 [Spaarnwoude rural 2125 |13.0 8.7 3.7 0.61 8.1 2.1 0.60 |7.5 2.4 0.71 |4.47

NL49546 |Zaanstad - Hemkade |industry (2145 (22.9 14.3 -6.2 0.63 15.0 -8.1 0.66 |13.0 -83 10.83 [3.26

NL49704 |Zaanstad - Hoogtij [industry [2120 |19.6 12.7 -3.0 0.66 13.4 -6.0 ]0.72 [12.1 -6.4 10.84 [3.72
Badhoevedorp -

NL49561 |Sloterweg undecided [2145 ]20.5 10.6 -3.9 0.64 10.8 2.9 ]0.61 |[8.9 -42 10.79 [3.96

Average street locations 34.9 24.5 -18.2 1050 (17.8 53 1055 ([13.0 -5.8 ]0.81
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Average urban background locations 16.8 8.8 -0.1 0.60 11.8 4.9 0.53 |84 4.0 0.76
Average all locations 234 14.8 -6.8 1057 ([13.6 -1.3  [057 |104 -1.9 10.78

1) Number of samples
2) In units pg/m?
3) The distance to the nearest observation site, in km
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